MTH 111, Math. for the Architects, Exam I, Spring 2014

Ayman Badawi

(Each question $=10$ points, total points 100 points)

QUESTION 1. Find an equation of the ellipse with the vertices $(4,3),(1,7)$, and $(-2,3)$. Find the constant k. Find the foci. Make a rough sketch of such ellipse.

QUESTION 2. Find an equation of the hyperbola that is centered at $(2,1)$ and with constant $k=6$ such that $(2,6)$ is one of the foci. Find the second foci, find the vertices, and make a rough sketch of such hyperbola.

QUESTION 3. Given $x=1$ is the directrix line of a parabola that passes through the point $(6,5)$ and the line $y=2$ passes through the vertex of the parabola. Find the vertex, the focus, and make a rough sketch of such parabola. Then find an equation of the parabola. [Hint: there are two such parabolas, just find one]

QUESTION 4. Find the directrix, the focus, and the vertex of the parabola $y=0.5(x+5)^{2}+4$

QUESTION 5. Find the foci, the constant k, and the vertices of the ellipse $(x+2)^{2} / 25+(y-3)^{2} / 9=1$

QUESTION 6. Find the center, the foci, the vertices of the hyperbola $x^{2}-2 y^{2}-4 y=18$

QUESTION 7. Find the foci, and the equation of the below ellipse:

1

QUESTION 8.

Find the foci, and the equation of the below hyperbola:

QUESTION 9. Find an equation of the plane P that contains the line $L: x=t, y=1-t, z=2 t$ and the point $Q=(1,0,5) \quad$ [note that the point Q does not lie on L]

QUESTION 10. a) Find the distance between the point $Q=(2,2,1)$ and the plane $x+3 y+5 z=15$
b) The line $L_{1}: x=5 t, y=4-t, z=3+t$ intersects the line $L_{2}: x=1+2 s, y=9-3 s, z=2 s$ at a point Q. Find Q

Faculty information

